Lecture 8

Introduction to Proofs, Direct Proofs, Proofs by Contraposition

An Example of a Proof

Theorem: If n is an odd integer, then n^{2} is also an odd integer.
Proof: By the definition of an odd integer,

$$
n=2 k+1, \text { where } k \text { is some integer. }
$$

Square on both sides of $n=2 k+1$ to obtain the value of n^{2}.

$$
\longrightarrow n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2 .\left(2 k^{2}+2 k\right)+1
$$

Thus, $n^{2}=2 k^{\prime}+1$, where $k^{\prime}=2 k^{2}+2 k$. Hence, n^{2} is an odd integer.
Using the existing facts such as (1) If $a=b$, then $a^{2}=b^{2}$, (2) $(a+b)^{2}=a^{2}+b^{2}+2 a b$, etc. Using the axiom that "If $a=b$ and $b=c$, then $a=c$." without stating.

Some Important Terms

A theorem is an important mathematical statement that can be proved.
A proposition is a less important mathematical statement that can be proved.
A lemma is a mathematical statement that can be proved and useful in proving other results.
A corollary is a mathematical statement that can be established directly from a theorem that has been proved.

A conjecture is a mathematical statement that is being proposed to be a true statement.

Methods of Proofs

Some of the types of informal proofs that we will learn are:

- Direct Proofs.
- Proof by Contraposition.
- Proof by Contradiction.
- Proof by Exhaustion.
- Proof by Induction.

Direct Proofs

In direct proofs, we establish the truth of a mathematical statement by a straightforward combination of axioms, definitions, rules of inferences, and existing facts.

For instance, the proof of the last theorem was a direct proof.

Let's do one more!

Theorem: If n is an odd integer, then n is the difference of squares of two integers.
Major Tip: Before writing the proof, ensure the following:

- You understand the statement you intend to proof.
- Play with the examples and convince yourself that the statement is true.
- You have an outline of the proof.

Examples: Direct Proofs

Theorem: If n is an odd integer, then n is the difference of squares of two integers.
Rough Work: Let's see whether the statement is true for some odd numbers.

$$
11=6^{2}-5^{2}, \quad 9=5^{2}-4^{2}, \quad 7=4^{2}-3^{2}, \quad 5=3^{2}-2^{2}
$$

We want two number k_{1} and k_{2}, such that $n=k_{1}^{2}-k_{2}^{2}$.
Try to express k_{1} and k_{2} in term of n using above examples.

Verify the guess, i.e., $n=\left(\frac{n+1}{2}\right)^{2}-\left(\frac{n-1}{2}\right)^{2}$.

Examples: Direct Proofs

Theorem: If n is an odd integer, then n is the difference of squares of two integers.
Proof: For any odd integer n, let $k_{1}=\left(\frac{n+1}{2}\right)$ and $k_{2}=\left(\frac{n-1}{2}\right)$.
Clearly, k_{1} and k_{2} are integers.
Easy steps do not require much justification. Below, we show that $n=k_{1}^{2}-k_{2}^{2}$.

$$
\begin{aligned}
k_{1}^{2}-k_{2}^{2} & =\left(\frac{n+1}{2}\right)^{2}-\left(\frac{n-1}{2}\right)^{2} \\
& =\frac{n^{2}+1+2 n}{4}-\frac{n^{2}+1-2 n}{4} \\
& =\frac{n^{2}+1+2 n-n^{2}-1+2 n}{4}=\frac{4 n}{4}=n
\end{aligned}
$$

Examples: Direct Proofs

Theorem: If n is an odd integer, then n is the difference of squares of two integers.
Alternative Proof: By the definition of an odd integer,
If n is an odd integer, then $n=2 k+1$, where k is some integer.
Below, we show that n is the difference of squares of two integers.

$$
\begin{aligned}
n & =2 k+1 \\
& =1 \cdot(2 k+1) \\
& =(k+1-k) \cdot(k+1+k) \\
& =(k+1)^{2}-k^{2} \quad\left(\operatorname{Using}(a+b)(a-b)=a^{2}-b^{2}\right)
\end{aligned}
$$

Examples: Direct Proofs

Theorem: For any positive integers a and b, if $n=a b$, then $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$.
Proof: \qquad ?????

Direct proof doesn't seem to work here....at least not easily.
Time to introduce Proof by Contraposition.

Proof by Contraposition

In proof by contraposition, we establish the truth of mathematical statement "If p, then q " by establishing truth of logically equivalent statement "If $\neg q$, then $\neg p$ ".

Suppose we want to prove the below theorem.
Theorem: For any positive integers a and b, if $\underbrace{n=a b}_{p}$, then $\underbrace{a \leq \sqrt{n} \text { or } b \leq \sqrt{n}}_{q}$.
$\neg p=n \neq a b$.
$\neg q=a>\sqrt{n}$ and $b>\sqrt{n}$. (Apply De Morgan's law on q.)

Theorem: For any positive integers a and b, if $a>\sqrt{n}$ and $b>\sqrt{n}$, then $a b \neq n$.

Examples: Proof by Contraposition

Theorem: For any positive integers a and b, if $a>\sqrt{n}$ and $b>\sqrt{n}$, then $a b \neq n$.
Proof: We will prove the contrapositive of the theorem. That is,
For any positive integers a and b, if $a>\sqrt{n}$ and $b>\sqrt{n}$, then $a b \neq n$.
We know that

$$
\begin{aligned}
& a>\sqrt{n} \\
& b>\sqrt{n}
\end{aligned}
$$

Multiply both the inequalities

$$
\begin{aligned}
a b & >\sqrt{n} \sqrt{n} \\
& >n
\end{aligned}
$$

Thus, $a b \neq n$.

